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ABSTRACT-Second- and fourth-order accurate finite- reduced sufficiently to adequately resolve the scales of 
difference approximations of the equations governing a interest then further reduction in mesh size would be 
free surface autobarotropic fluid are compared with each inefficient in comparison with the use of more accurate 
other and with a second-order approximation on a one- finite-difference approximations. 
half mesh. It is concluded that once the mesh size has been 
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1. INTRODUCTION 

The use of numerical integration methods to study the 
behavior of theoretical models of the atmosphere or to 
predict the evolution of an actual state of the atmosphere 
is subject to several limitations. One of these limitations 
involves the accuracy of the numerical integration methods 
employed in the calculations. In recent papers (Miyakoda 
et al. 1971, Wellck et al. 1971), the d u e n c e  of the size 
of the horizontal gridpoint separation upon the accuracy 
of numerical solutions of complex baroclinic models was 
reported. The variation of gridpoint separation most 
directly influences the truncation error in the calculation 
of derivatives, but its also plays a role in the inner work- 
ings of the nonlinear and diabatic processes incorporated 
in the models (Manabe et al. 1970). Experience with a 
fine-mesh version of the National Meteorological Center 
primitive-equation baroclinic model indicates that the 
increased resolution also results in more accurate short- 
range (24-hr) forecasts. 

The approach adopted in the work noted above involved 
the variation of the grid resolution alone; the finite- 
difference approximations were otherwise unaltered. 
Several papers (Miyakoda 1960, Crowley 1968, Gram- 
meltvedt 1969) have been published that indicate that 
truncation error may be effectively reduced by the use 
of more accurate (i.e., higher order) finitedifference ap- 
proximations. We are unaware of any previous work in 
which comparative integrations of the primitive meteoro- 
logical equations have been conducted using fine-mesh 
and higher order difference approximations. The present 
paper is intended as a modest contribution in this regard. 

We will show that, at  least with respect to the primitive, 
free-surface barotropic model, the use of higher order 
finite-difference approximations offers an efficient a1 terna- 
tive to the reduction of the gridpoint separation as a 
method for the reduction of truncation error. The e5ciency 
factor arises from the fact that computation requirements 
vary as the inverse third power of the grid separation. 
The halving of gridpoint spacing requires an eightfold 

increase in computing effort to attain a forecast valid a t  
a fixed time after the kitial moment. In contrast, the 
use of a higher order scheme requires no increase in the 
number of gridpoints. The required calculations a t  each of 
the points' are only increased by a small amount, and the 
time step admitted by the linear stability constraint is 
reduced by some 30 percent as compared with 50 percent 
in the half-mesh case. 

2. FORMULATION OF A HIGHER ORDER 
APPROXIMATION 

The order of a finite-difference approximation is defined 
as the exponential power to which the grid interval, Ax, 
is raised in the leading term of the residual. For example, a 
function, f(x), which is analytic, possesses in some neigh- 
borhood of a point xj the power series representation 

where the symbol O(A2) means that we omit residual 
terms that are (small) of the order AS. By combining 
eq (1) with a similar expression forf(x,-Ax), one may de- 
rive the result 

j ( z , + b )  - j ( z , -b )=2  a_f ax AZ+O(A~~) .  (2) 
, . , <., 

A division of eq' (2) by 2Ax yields the second-order, 
accurate, centered, finite-difference approximation for the 
first derivative, '' 

(3) 

A common misinterpretation of eq (3) should be put to 
rest. Some ask the question, If Ax is a large number (e.g., 
381 km), why does not a higher power of Az in the residual 
imply the existence of a greater error in the approxima- 
tion?" To answer this objection, one may refer back to eq 
(1) and note that the next term in the power series would 
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have been 
g w. 
ax3 3! (4) 

The magnitude of this term depends upon the third deriva- 
tive of the function, j ( x ) ,  as well as the power of Ax. Let 
us suppose that j ( x )  is the trigonometric function 

2nx 
j ( Z ) =  sin ~ L (5) 

where L is the wavelength or scale of the trigonometric 
function. 

When eq (5) is used in eq (4), one gets 

It is, therefore, clear that an increase in the order of an 
approximation will lead to increased accuracy only if the 
grid spacing, Ax, is small compared with the scale of the 
function being differentiated. It is imperative that the 
grid resolution be sufficiently refined with respect to the 
scale of the fields that one wishes to calculate. As a general 
rule (Miyakoda 1960, Grammeltvedt 1969), one should 
require ( A x / L )  to be about 0.1. 

In developing a higher order scheme for approximating 
the terms that appear in the equations of meteorological 
dynamics, me have followed the approach used by Shuman 
(1962). The derivative is first estimated midway between 
gridpoints by a centered-difference formula. The derivative 
is then transferred to gridpoints by an interpolation. Two 
symbolic operators were defined by Shuman, 

"-Ax (7) 
1 f -- ( f i+1/2-jj-112> 

and 

I = 1 / 2 ( f i + l / Z + f i - 1 1 2 ) .  (8) 

The first symbol [eq (7)J denotes an approximation to the 
first derivative of the function; the second symbol [eq (S)] 
denotes a simple interpolation. Since the gridpoints exist 
only for integer values of j ,  and the discrete function, 
j j ,  is defined only at the gridpoints, eq (7) and (8) are 
applicable individually only midmaj- between neighboring 
gridpoints. But, when symbols are combined; that is, 
when the derivative is averaged, the result is defined at a 
grid point. The second-order accurate approximation to 
the first derivative given in eq ( 3 )  is sj-mbolically denoted 

By analogy, we approached the approximation of the 
first derivative in two steps. We first determined the 
centered, fourth-order approximation for the derivative 
valid midway between gridpoints; that is, 

by 7;. 

(9) 

The subscript, h, is used to denote the higher order nature 
of the approximation. 

The second step is the development of a formula for 
interpolating the derivative back to a gridpoint. A variety 
of possibilities exist for the interpolation. I n  this paper, 
we report on only one that was developed through sym- 
metry considerations and the imposition of constraints on 
the accuracy of the low wave number interpolation. 
Denoting this averaging operator by an overbar xh, we 
write 

Once more, the final approximation for the first derivative 
may be expressed by a combination of the two operators. 
One obtains 

A comparison of this formula with the fourth-order or 
"five point" scheme given by Miyakoda (1960) suggests 
their near equivalence. It is likely that Crowley's (1968) 
experience would be replicated if the last term were 
suppressed. However, the last term in eq (11) does add 
to the accuracy of the approximation for functions with 
large scales, and it is largely responsible for the theoretical 
superiority of the higher order scheme to the use of a fine 
mesh in the low wave number portion of the spectrum. 

The truncation error of the fourth-order approximation 
[eq ( 1  1) J may be compared with that of the second-order 
approximation [eq (3)J and with the error associated with 
the second-order approximation when a finer (one-half) 
mesh size is used. To do this comparison, we consider a 
complex trigonometric function, et'=, and examine the 
ratio of the finite difference first derivative to the analytic 
first derivative, as the wave number, k, is varied. 

Since we are dealing with discrete functions, the wave 
number is not uniquely determined because of aliasing. 
We shall proceed on the premise that the wave number to 
be associated with a given set of gridpoint values is that 
lying within the interval 

n O < k < Z *  

For concreteness, we assume a fundamental interval 
covered by 30 grid intervals. The allowable values of k on 
such a domain are related to the Fourier integer indices, m, 

2 n m  
30Ax 

k=- 

with m running between 0 and 15, the latter value being 
associated with the limiting two-grid interval wave on 
the regular (ie., nonfine mesh) grid. 

In table 1, we have tabulated the ratio of the finite- 
difference approximation of the first' derivative to the 
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TABLE 1.-The ratio of finite-difference approximation of the first 
derivative to the analytic value for second-order accurate schemes on 
a regular and one-half mesh and for a fourth-order accurate scheme as 
a function of Fourier harmonic index, m, on a fundamental interval 
containing SO gridpoint intervals 

Fourier components 

and 
u (z) = Uef rz 

0 (2) = Te‘ IZ. 

m Second Fourth Secondader 
order order half mesh 

1 0.993 
2 .971  
3 .936 
4 . 887 
5 . 827 
6 .757 
7 .678 
8 .594  
9 . 505 

10 .414  
11 . 323 

1.000 
0.999 

.996 

.987  

.969 

.939 

. 892 

. 827 

.743 

.640 

. 521 

0.998 
.993  
.984  
. 971 
.955 
. 936 
. 913 
.887  
.858 
. 827 
. 793 

12 . 234 .391 .757  
13 . 149 . 256 .718 
14 .071  . 123 .678 
15 . 000 . 000 .637 

analytic value as a function of the Fourier integer index, 
m, for the three alternate difference schemes. 

In  anticipation of the results of a trial numerical inte- 
gration reported later in this paper, we note that the 
fine-mesh and fourth-order schemes have equivalent 
accuracy at  the sixth harmonic and that both of these 
schemes are considerably more accurate than is the 
second-order scheme. It is of some interest to note the 
slightly superior accuracy of the fourth-order scheme for 
the low values of m. In our view, only if the fourth-order 
scheme is more efficient than the fine-mesh scheme would 
it be legitimate to give preference to the fourth-order 
scheme’s improved accuracy over the fine-mesh scheme. 

3. TRUNCATION ERROR IN NONLINEAR TERMS 

Grammeltvedt (1969) and Lilly (1965) have discussed 
the nonlinear stability properties of various finite-differ- 
ence schemes for the equations of meteorological dynam- 
ics. In broad agreement with their results and our own 
experience (Robert et al. 1970), the problem of non- 
linear stability control seems to lie in the suppression of 
the development and interaction of significantly different 
numerical solutions on alternate Richardson lattices 
(Platzman 1958, 1963, Richardson 1965) of the finite- 
difference equations. In the works of Lilly, Miyakoda, 
and Crowley, previously cited one finds clever devices used 
to  uncover Some facets of the nonlinear problem but rigor- 
ous analysis is not really possible. In  this paper, we have 
confined ourselves to a simple inspection of the response 
given by the second-order and fourth-order approxima- 
tion of an advective term. 

The term u(aO/az) is typical of the nonlinear terms 
encountered in meteorological dynamics. We presume 
that the variables u and e are at some time describable by 

The analytic value of the term is, therefore, 

ae 
ax u - = h e .  

We then consider the two finite-difference approximations 
to the term 

and 

-2 

U2ez 

-h 
;“e,, 

in which the symbols are as defined earlier. Note that the 
.advecting wind, u, has been averaged using the same 
operator in both expressions. This is done here to be com- 
patible with the scheme used in the two-dimensional 
integration reported later. Using the discrete form of the 
functions in eq (13); that is, 

and 

with 

and 
O<rAx<a 

O<SAX<T, 

the ratio of the finite-difference approximation [eq (15)] 
to  the analytic value [eq (14)] of the,nonlinear term was 
calculated as a function of rAx/a and sAx/a. The result of 
this calculation is tabulated in table 2. 

An inspection of these results certainly is indicative 
of the difficulty of achieving a modicum of accuracy in 
a nonlinear integration by finite-difference methods. It 
will be noted that half of the table contains negative 
responses. These values occur for all of the interactions 
that involve an aliased result. Only in the lower left 
corner of the table does one encounter values that seem 
modestly good. The second-order scheme has an ac- 
curacy greater than 90 percent only when both the ad- 
vecting wind and the advected quantity are resolved by 
more than 20 gridpoints. I n  the fourth-order scheme, 
this resolution is relaxed to just 10 gridpoints. One may 
estimate that a fourth-order scheme yields nonlinear 
term estimations approximately equivalent to those 
attainable with a second-order scheme on a half mesh. 

The slightly larger, erroneous responses given by the 
fourth-order scheme in the aliasing domain was pre- 
viously noted by Grammeltvedt (1969). We have not 
seriously pursued this question because of its complexity 
and the likelihood that nonlinear instability may be 
controlled (avoided) by techniques not directly related 
to the accuracy of the finite-difference schemes. 
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TABLE 2.-Ratio of $nite-diference to analytic value of an advection 
temn as a function of wave numbprs s and r of the advected quantity 
and the advecting wind, respectively. The upper number is for the 
second-order scheme and the lower number is for the fourth-order 
scheme. 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 k: 
\ - 

U 

1. 0 -0.10 -0.19 -0.26 -0.30 -0.32 -0.30 -0.26 -0.19 -0.10 
- .17 - .31 - .42 -.47 -.46 -.41 -.33 --.a -.12 

0.9 ,00 -.lo -.19 -,26 -.29 -.29 -.26 -.19 -.lo 
.OO -.18 -.32 -.42 -.46 -.42 --.% -.25 -.13 

.8 .12 .oO -.11 -.19 -.24 -.26 -.24 -.19 -.11 
.20 .OO -.18 -.32 d.39 -.40 -.36 -.26 -.13 

7 .26 .12 .OO -.lo -.18 -.22 -.22 -.18 -.lo 
.41 .u) .OO -.17 -.29 -.34 -.33 -.26 -.14 

. 6  .38 .26 .12 .OO -.lo --.E -.18 -.16 -.lo 
.60 .41 .20 .OO -.16 -.25 -.27 --.a -.13 

.6 .62 .39 .26 .I1 .OO -.08 -.13 -.13 -.08 
.75 .69 .39 .18 .OO -.13 -.20 -.19 -.12 

.4 .66 .62 .38 .23 .10 .OO -.07 -.09 -.07 
.m .7a .M .36 .16 .OO -.IO -.14 -.IO 

.3 .77 .65 .61 .35 .21 .09 .OO --.a --.a 
.!33 .84 .69 .61 .32 .14 .OO -.07 -.07 

. 2  .87 .76 .62 .47 .32 .18 .07 . OO -. 02 
.97 .90 .79 .63 .46 .26 . 11 . 00 -. 04 

.1 .94 .84 .72 .67 .41 .27 .14 .a .OO 
.98 .9* .84 .71 .M .37 .20 .07 .OO 

4. LINEAR COMPUTATIONAL STABILITY 
The question arises, “Is the linear stability criterion 

modified when one uses a higher order finite difference 
approximation for the spatial derivatives?” The answer 
appears to be yes. The following simple analysis is offered 
in demonstration. 

Using the leapfrog scheme for the time derivative, one 
may consider the simple equation 

in which c is a constant. The spatial derivative will be 
approximated by both the second; 
schemes, 

- 1  
j t=  -c j :  

and 

The solution is sought in the form 

j ( j A x ,  nAt)  = {neiR5Az. 

The requirement for computational 
1 { I  <1, and this leads to  the constraint 

1 A t < ,  
kc 

and fourth-order 

(19) 

( 2 0 )  

(21)  

stability is that 

1 
1 

I I 
L 22- 

I I 

FIGURE 1.-The initial distribution of geopotential height depicted 
by isopleths drawn at 50-m intervals. The channel walls are 
shown as solid horizontal lines, the cyclic boundaries as dashed 
veitical lines. The domain is covered by 31 gridpoints in the 
horizontal (east-west) and 23 gridpoints in the vertical (north- 
south). 

with 
A sin kAx k=k - kAx ( 2 3 )  

for eq (19)) and 

2kAx 
sin kAx sin 3kAx-24 

4- 3kAx 64 ( kAx k=- 87--- 
A 

in the case of eq ( 2 0 ) .  
The limit on At& associated with the largest value of k. 

If (At)2 is the limit associated with the second-order 
scheme, then by comparison of eq ( 2 3 )  and ( 2 4 ) ,  one sees 
that the limit on At for the fourth-order scheme (At)., is 
approximately 

A 

( 2 5 )  
64 (At),=% (At)z=O.735(At)z* 

One finds, in this way, that the use of the fourth-order 
scheme requires a 30-percent reduction in the time step 
used in the integration. This is not an excessive penalty 
to pay for the improvement in accuracy that is apparently 
achievable by the use of the fourth-order scheme. 

5. A NUMERICAL EXPERIMENT 

To make the potential significance of the use of higher 
order schemes more evident, we performed a numerical 
experiment. The comprehensive study of Grammeltvedt 
(1969) was based on the numerical integration of an 
idealized barotropic flow in a cyclic channel. Polger (1971) 
performed amumber of experiments with Grammeltvedt’s 
equations, and we decided to test the higher order scheme 
with that computer program. The Initial Condition I1 
used by Grammeltvedt was adopted. Three 72-hr forecasts 



A 

I 

FIGURE 2.-The 24-hr forecasts of geopotential height by the (A) 
fine-mesh, (B) second-order, and (C) fourth-order schemes. The 
light lines in B and C show the difference field (relevant forecast 
less the fine-mesh forecast) isoplethed at intervals of 20 m. 

were calculated. The second-order system, 

B 

I 

-d' I 220 I 
IC I 

FIGURE 3 . S a m e  as figure 2 for a 48-hr forecast. 

2 

-m* i:+Ti:+P;:+;:+f u L, 

5:+(mz+(myY=ol 
and 

was used on both a regular mesh and on a fine (one-half) 
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FIGURE 4.-Same as figure 2 for a 72-hr forecast. 

mesh. The fourth-order scheme, 

was solved only on the regular mesh. 
We did not experiment with many alternate versions of 

the higher order scheme. It is fair157 clear that alternative 
arrangements might have some advantages. The advecting 
winds were treated using second-order averaging to avoid 
smearing the wind maxima, the meridional profile of which 
is not well resolved on the regular grid. 

Application of the fourth-order scheme near the y- 
coordinate boundaries was not possible. On the row once 
removed from the boundaries, the second-order scheme 
was used instead. The results of this experiment are de- 
picted in figures 1 4 .  Figure l shows the initial contours of 
geopotential height. The first and third zonal harmonics 
are evident. Figures 2 4  are the fields a t  24, 48, and 72 
hr, respectively, as predicted by the fine mesh, regular 
mesh, and fourth-order schemes. The deviation of the 
regular mesh and fourth-order results from the fine mesh 
calculation are shown. 

It is clear that the regular mesh solution departs quite 
considerably from the results obtained with the other 
schemes. The error field is rather characteristic of those 
found in operational forecasts. The smaller scale wave is 
translated too slowly. 

From the theoretical estimate of truncation error, the 
fourth-order scheme should be somewhat more accurate 
than the fine mesh for the harmonics included in the initial 
data. There is some evidence that this is the case in the 
numerical experiment. The fourth-order scheme has trans - 
lated the systems of troughs and ridges somewhat faster 
than did the fine-mesh calculation. 

6. CONCLUSIONS 

The results obtained, although quite limited, are of much 
more than academic interest. As noted by Wellck et al. 
(1971), the use of h e r  mesh sizes is extremely costly in 
computing requirements. While the methods used here 
were based on a difference scheme in advective form, 
Crowley’s work (1968) indicates that the same techniques 
may be used with the conservative schemes that are pre- 
ferred by many in general circulation simulation. 

It should also be noted that higher order schemes are not 
an adequate substitute for reduced mesh sizes a t  the 
present time. We believe that a mesh size that adequately 
depicts the significant meteorological scales should be used. 
Once this has been accomplished, further grid reduction 
may be avoided by the implementation of more accurate 
difference schemes. 
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